

Об интерпретации информации ДЗЗ, получаемой в результате многозональной съемки в инфракрасном

диапазоне, как температуры, излучения

Зайцев А.А.

АО «Российские космические системы»

Существующая в отечественной практике

терминология, используемая для описания

температуры излучения.

Яркостная температура (англ.: *Radiance temperatute*) есть температура АЧТ, при которой его СПЭЯ для какой-либо длины волны равна СПЭЯ данного источника излучения для той же длины волны. То есть на длине волны λ' яркостная температура *T*^{ярк} удовлетворяет уравнению

$$B_{\lambda'}(T^{\mathrm{ярк}}) = L_{e,\lambda'},$$

где $L_{e,\lambda}$ — СПЭЯ объекта, B_{λ} — СПЭЯ АЧТ

Физическая оптика. Терминология / ред. Э.Н. Терентьева. – М. : Наука, 1970. – 53 с.
 ГОСТ 8.654—2016. Фотометрия. Термины и определения. – Введ. 2017–07–01. – М. : Стандартинформ, 2016. – 15 с.

Радиационная температура (англ.: *Full radiator temperature*) есть температура АЧТ, при которой его интегральная энергетическая яркость по всему спектру равна интегральной энергетической яркости данного источника излучения. То есть радиационная температура *T*^{рад} удовлетворяет уравнению

Физическая оптика. Терминология / ред. Э.Н. Терентьева. – М.: Наука, 1970. – 53 с.

для описания температуры излучения

в отечественной практике терминология

Предлагаемая к использованию

Предлагается ввести в отечественную практику термин «эффективная радиационная температура» (англ.: *Brightness temperature*) и определить его как температуру АЧТ, при которой его интегральная энергетическая яркость в какомлибо спектральном диапазоне равна интегральной энергетической яркости данного источника излучения в этом же спектральном диапазоне. То есть эффективная радиационная температура Тэфф рад удовлетворяет уравнению ∞ $\int \rho_{\lambda} B_{\lambda} (T^{\circ \phi \phi \, pad}) d\lambda = \int \rho_{\lambda} L_{e,\lambda} d\lambda,$

где ρ_{λ} — ФСЧ канала

Norman J.M. Terminology in thermal infrared remote sensing of natural surfaces / J.M. Norman, F. Becker // Agricultural and Forest Meteorology. – 1995. – vol. 77. – P. 153–166.

Becker F. Temperature-Independent Spectral Indices in Thermal Infrared Bands / F. Becker, S.–L. Li // Remote Sensing of Environment. – 1990. – vol. 32. – P. 17–33.

Предлагается ввести в отечественную практику термин «эффективная яркостная температура» и определить его как температуру АЧТ, при которой его СПЭЯ для некоторой длины волны, называемой эффективной, равна интегральной энергетической яркости данного источника излучения в какомспектральном диапазоне, нормированной на интеграл функции либо спектральной чувствительности по длине волны. То есть на длине волны λэфф эффективная яркостная температура Тэфф ярк удовлетворяет уравнению 000

$$B_{\lambda^{\ni \phi \phi}}(T^{\ni \phi \phi \, \operatorname{spk}}) = \frac{\int_{0}^{\infty} \rho_{\lambda} L_{e,\lambda} d\lambda}{\int_{0}^{\infty} \rho_{\lambda} d\lambda}$$

Becker F. Temperature-Independent Spectral Indices in Thermal Infrared Bands / F. Becker, S.–L. Li // Remote Sensing of Environment. – 1990. – vol. 32. – P. 17–33.

Определение $\lambda^{9\phi\phi}$

и сравнение $T^{э \phi \phi}$ рад и $T^{э \phi \phi}$ ярк

Для определения $\lambda^{\flat \varphi \varphi}$ можно ввести критерий

 $||T^{\flat \phi \phi \ \text{ярк}} - T^{\flat \phi \phi \ \text{рад}}|| \rightarrow min,$

где || || — некоторая норма. Подставляя выражение для $T^{ o \phi \phi \, я p \kappa}$, получим

Приравняем выражение под операцией нормы к 0 и решим получившееся

уравнение

Графики решений уравнения для модельных каналов с различной центральной длиной волны (цветные) и график функции смещения Вина (черный)

Графики решений уравнения для модельных каналов с различной шириной (цветные) и график функции смещения Вина (черный)

В качестве нормы в критерии предлагается использовать максимум модуля

где $T_1^{\mathfrak{s}\phi\phi\,pad}$ и $T_2^{\mathfrak{s}\phi\phi\,pad}$ — границы диапазона измеряемых температур.

$$\lambda^{i\phi\phi} = const, \quad T_1^{i\phi\phi} = C^{i\phi\phi} = C^{$$

с ограничением

 $\|T^{\circ \phi \phi \operatorname{spk}} - T^{\circ \phi \phi \operatorname{pad}}\| \to \min$

предлагается минимизировать критерий

Для снятия неопределенности значения $\lambda^{э \phi \phi}$ вместо решения уравнения

График решения уравнения и графики значений $\lambda^{9\phi\phi}$, удовлетворяющих критерию для различных температурных диапазонов, для канала 10,6–11,4 мкм

Результаты определения значений $\lambda^{9\phi\phi}$ по критерию для канала 10,6–11,4 мкм

Д иапазон <i>Т</i> ^{эфф рад} , К	λ ^{эφφ} , мкм	$\lambda^{ i \phi \phi} - ar{\lambda}$, мкм	$max T^{э \phi \phi ярк} - T^{э \phi \phi рад} $, К
150–350	10,999	0,001	0,056
150–200	10,997	0,003	0,024
175–225	10,992	0,008	0,025
200–250	10,983	0,017	0,036
225–275	10,999	0,001	0,056
250–300	10,999	0,001	0,056
275–325	11,012	0,012	0,042
300–350	11,005	0,005	0,031

где $\overline{\lambda} = \frac{\int_0^\infty \lambda \rho_\lambda d\lambda}{\int_0^\infty \rho_\lambda d\lambda}$ — средняя длина волны канала

Графики зависимости величины $(T^{\flat \phi \phi \, \mathrm{spk}} - T^{\flat \phi \phi \, \mathrm{pad}})$ от значения $T^{\flat \phi \phi \, \mathrm{pad}}$

в температурном диапазоне 150-350 К для различных модельных каналов

Результаты расчета значений λ^{эфф} и *Т*^{эфф ярк} температурном диапазоне 150–350 К для различных модельных каналов

Спектральный диапазон, мкм	λ ^{эφφ} , мкм	$\lambda^{ ext{9} \phi \phi} - \overline{\lambda}$, ΜΚΜ	$max T^{э \phi \phi я p \kappa} - T^{э \phi \phi p a d} $, К
4–6	5,130	0,130	3,682
6–8	7,030	0,030	1,412
8–10	8,996	-0,004	0,644
10–12	10,998	-0,002	0,352
12–14	12,997	-0,003	0,213

спектральных каналов

17

Сравнение Тэфф рад и Тэфф ярк для реальных

Графики ФСЧ ИК-каналов аппаратуры МСУ-МР и МСУ-ГС

Графики зависимости величины ($T^{\flat \phi \phi \, я p \kappa} - T^{\flat \phi \phi \, p a d}$) от значения $T^{\flat \phi \phi \, p a d}$ в температурном диапазоне 190–340 К для ИК-каналов МСУ-МР и МСУ-ГС

Результаты расчета значений λ^{эфф} и *Т*^{эфф ярк} температурном диапазоне 190–340 К в ИК-каналах аппаратуры МСУ-МР и МСУ-ГС

Название аппаратуры / № канала	λ ^{эφφ} , мкм	$\lambda^{{\mathfrak i} \phi \phi} - ar{\lambda}$, ΜΚΜ	$max T^{э \phi \phi я p \kappa} - T^{э \phi \phi p a d} $, К
МСУ-МР №2-2 / 4	3,907	0,053	1,322
МСУ-МР №2-2 / 5	10,835	-0,001	0,165
МСУ-МР №2-2 / 6	11,869	-0,001	0,148
МСУ-ГС №2 / 4	3,937	0,036	0,917
МСУ-ГС №2 / 5	6,358	0,011	0,687
МСУ-ГС №2 / 6	7,941	-0,019	0,366
МСУ-ГС №2 / 7	8,753	-0,001	0,157
МСУ-ГС №2 / 8	9,701	-0,001	0,229
МСУ-ГС №2 / 9	10,603	0,002	0,099
МСУ-ГС №2 / 10	11,706	-0,002	0,195

Выходной сигнал аппаратуры

 $U = a \int_{0}^{\infty} \rho_{\lambda} L_{e,\lambda} d\lambda + b = a \int_{0}^{\infty} \rho_{\lambda} B_{\lambda} (T^{\flat \varphi \varphi \text{ pad}}) d\lambda + b,$

где *а* и *b* — коэффициенты линейного преобразования (*а* — интегральная чувствительность, *b* — уровень сигнала нулевой яркости).

Аппроксимирующая функция

 $\widetilde{U} = \alpha B_{\lambda^{3}\phi\phi}(T^{3\phi\phi, \eta p\kappa}) + \beta,$

где *α*, *β* и λ^{эфф} — варьируемые параметры

Графики зависимости величины ($T^{\flat \phi \phi \, я p \kappa} - T^{\flat \phi \phi \, p a d}$) от значения $T^{\flat \phi \phi \, p a d}$ в температурном диапазоне 190–340 К для ИК-каналов МСУ-МР и МСУ-ГС с учетом поправочных коэффициентов α и β

Результаты расчета значений λ^{эфф} и *Т*^{эфф ярк} температурном диапазоне 190–340 К в ИК-каналах аппаратуры МСУ-МР и МСУ-ГС

Название аппаратуры / № канала	λ ^{эφφ} , мкм	$\lambda^{ ext{$ ext{ϕ}$} \phi} - \overline{\lambda}$, ΜΚΜ	$max T^{э \phi \phi я p \kappa} - T^{э \phi \phi p a d} $, К
МСУ-МР №2-2 / 4	3,981	0,127	0,251
МСУ-МР №2-2 / 5	10,825	-0,011	0,034
МСУ-МР №2-2 / 6	11,851	-0,019	0,030
МСУ-ГС №2 / 4	3,989	0,087	0,182
МСУ-ГС №2 / 5	6,417	0,071	0,176
МСУ-ГС №2 / 6	7,981	0,021	0,091
МСУ-ГС №2 / 7	8,758	0,004	0,033
МСУ-ГС №2 / 8	9,700	-0,002	0,048
МСУ-ГС №2 / 9	10,596	-0,005	0,021
МСУ-ГС №2 / 10	11,686	-0,023	0,040

Выводы:

> Показано несовершенство существующей терминологии

Предложены и определены термины «эффективная радиационная температура», «эффективная яркостная

температура» и «эффективная длина волны»

Проанализирована возможность применения предложенных терминов Полный текст выступления будет опубликован в журнале

«Ракетно-космическое приборостроение и информационные системы»

2022, том 9, выпуск 4

Об интерпретации информации ДЗЗ, получаемой в результате многозональной съемки в инфракрасном

диапазоне, как температуры, излучения

Зайцев А.А.

АО «Российские космические системы»